Main content
Organic chemistry
Course: Organic chemistry > Unit 2
Lesson 3: Organic acid-base chemistry- Acid-base definitions
- Organic acid-base mechanisms
- Ka and acid strength
- Ka and pKa review
- Using a pKa table
- Using pKa values to predict the position of equilibrium
- Stabilization of a conjugate base: electronegativity
- Acid strength, anion size, and bond energy
- Stabilization of a conjugate base: resonance
- Stabilization of a conjugate base: induction
- Stabilization of a conjugate base: hybridization
- Stabilization of a conjugate base: solvation
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Acid-base definitions
Bronsted-Lowry and Lewis definitions of acids and bases. Created by Jay.
Want to join the conversation?
- Which is the more accepted definition of an acid: Bronsted-Lowry Acid or Lewis Acid? I have been told that the Lewis definition is the more correct one.(5 votes)
- Neither definition is "more correct", they are just different. The Lewis Acid definition is a broader one, so encompasses more compounds. A subset of these compounds would also qualify as Bronsted-Lowry Acids, since this definition is much more restrictive. There is no true definition of an acid; a chemical doesn't know if it is an acid or a base or neither. It's useful for us to classify and group compounds so that we can predict the chemical reactions that they might undergo based on the reactivity of other similarly classified compounds. Since a tendency to either donate or accept electron density (or donate or accept protons) has a large effect on reactivity, we have defined two arbitrary groups as "acid" and "base" based on these properties. The different acid/base definitions draw different boundaries for which compounds are included in these groups. Each definition is equally valid, but useful in different situations.(24 votes)
- Athow can it be said the "HCl is accepting a pair of electrons? " On the other side of the reaction the H is with the water. Cl is now by itself and has only one more electron than it has normally, so neither does it seem fair to say that Cl is accepting a pair of electrons. 7:41(12 votes)
- in this illustration he definitely went straight to the final result, but actually to present it in a step by step it would go like this:
- First the lone pair of the O atom would attack the H atom on HCL molecule and form a bond with H -> Now H20 has turned into a e- donor right? -> H20 is Lewis Base
- Then after the H of HCL is gone, there's a single bond left which will turn into a lone pair for Cl! So here Cl just receives a lone pair which means it's a Lewis Acid.
What is missing here is probability a second arrow to illustrate how the bond between H and Cl becomes the lone pair for Cl atom. Hope this help :)(6 votes)
- At, how is Boron sp2 Hybridized? 5:36(5 votes)
- Boron is only bonded to 3 things and doesn't have any lone pairs of electrons, kind of like a carbocation.(7 votes)
- How CH3SH is more acidic than H2O ?
Please help.
Thank you in advance.(3 votes)- Sulfur is a larger atom than oxygen, thus is better able to delocalize the negative charge.(6 votes)
- Why does B get a formal charge of -1?(4 votes)
- Because B (boron) has 3 valence electrons (you can easily look that up in the periodic table), and the formal charge is calculated as follows: amount of valence electrons of the atom - actual amount of electrons surrounding it (see also the previous video, Oxidation States II, betweenand 8:30). In this case, there are 4 electrons surrounding it - in each of the 4 covalent bonds (3 with the hydrogen atoms, 1 with the oxygen), the boron gets one electron and the other atom gets the other. 9:00
So 3 - 4 is -1 formal charge. The oxygen next to it normally has 6 valence electrons, but in this case there are only 5 electrons surrounding it, so 6 - 5 = +1 formal charge.(4 votes)
- what are conjugate acids n bases?(2 votes)
- The conjugate base of an acid is the acid without its acidic proton. Likewise, if you have a base, adding a proton to its basic site would give you its conjugate acid. That is, conjugate acids and bases are related through the addition or removal of a proton.(4 votes)
- Could somebody please explain to me why oxygen can form more than two bonds? I mean it is usually seen having only two bonds right? What are the rules of bonding for atoms? What is the mechanism? Is there a video on here where this is explained? This is causing me some serious headache and confusion.(1 vote)
- The important thing is the number of electrons, not the number of bonds. Oxygen has 6 valence electrons, so needs two more to complete its octet. Often, oxygen achieves this by forming two covalent bonds, as you've said. However, if an oxygen that already has two covalent bonds shares one of its lone pairs of electrons in a third covalent bond (for example, with an H+), it will still have an octet. The difference will be that, since it is now sharing these 2 electrons it now only gets half a negative charge from each (that is, it is still associated with both electrons as far as it octet goes, but it has lost one full charge (1/2 charge from each electron)). Thus, overall the oxygen will have a positive formal charge.
Conversely a negatively charged oxygen atom has 7 electrons, so only needs to form one covalent bond to complete its octet.(5 votes)
- Why does the arrow go from the electron in water to the hydrogen in HCl instead of the other way around?(2 votes)
- an curved arrow goes from electron rich atom to the electron deficient atom(1 vote)
- So what really in layman's terms is the meaning of Acid and Base and also what does Bronsted-Lowry and Lewis mean??(1 vote)
- Kinda depends on the theory...
Bronsted-Lowry: acids are H+ donors, bases are H+ acceptors
Lewis: acids are lone pair acceptors, bases are lone pair donors(2 votes)
- at, how does oxygen get a positive charge due to the lone pair? isn't the lone pair negative? so shouldn't it give the oxygen a negative charge? 2:36(1 vote)
- When water gained a hydrogen from hydrochloric acid what happened was that a lone pair form the water's oxygen attacked the hydrogen in hydrochloric acid. This causes the bonding electrons that once formed the H-Cl bond to jump to the chlorine and become a lone pair for the chloride ion. And the lone pair of the oxygen now becomes bonding electrons of the O-H bond. Ultimately what happened what that the water's oxygen extracted a hydrogen atom minus the electrons, so essentially a proton, from the hydrochloric acid. If water is electronically neutral before this extraction then the addition of another positive proton will give the resulting product an overall positive charge. This resulting ion, the hydronium ion, has a +1 charge with the oxygen having a formal charge of +1.
Hope that helps.(2 votes)
Video transcript
Let's talk about the acid-base
definitions for Bronsted-Lowry and, also, Lewis. And we'll start
with Bronsted-Lowry. So, a Bronsted-Lowry
Acid is a proton donor, and a Bronsted-Lowry Base
is a proton acceptor. So let's, really
quickly, review what this definition means by proton. So if I look at this
diagram, right here, I'm going to draw the hydrogen
atom, or the most common isotope. So hydrogen has one proton in
the nucleus and one electron, somewhere around our nucleus. So a negative charge, like that. And so, we would say
this is hydrogen. All right? And then we put, it's one
valence electron, right there, to represent the hydrogen atom,
or the most common isotope. If we were to, somehow,
take away this electron, we would only be left
with the proton here. We'd only be left with
the proton in the nucleus. And so, when we're
talking about a proton, we're talking about the
nucleus of a hydrogen atom, which is equal to H plus. So, no longer are we
talking about the electron. So let's see how this applies
to an acid-base reaction. And so we start over
here with water. And then we have HCl
over here on the right. Now, in this bond, between the
H the Cl, one of those electrons came from the hydrogen and one
of them came from the chlorine. So let me just go ahead
and draw those in. So the one from the hydrogen,
I'm going to put in blue here. And that's this electron from
hydrogen, right here in blue. And then for chlorine, I'm going
to make that electron green. So right in here, like that. And so for this
acid-base reaction, a lone pair of
electrons in the oxygen is going to take this proton. So just the nucleus
of the hydrogen atom leaving the
electron in blue behind. And that electron
in blue stays behind and ends up on the chlorine. So let's go ahead and draw
what we would form from that. We would have oxygen here. The oxygen had two
bonds to hydrogen. And the oxygen just picked
up another bond to hydrogen. And so, let me go ahead
and mark those electrons. So these electrons
in here, in magenta, formed a new bond
with that proton. So that's this bond right here. And then we had some
electrons on oxygen. Let me go ahead and
make those in red. So these electrons in red on
the oxygen didn't do anything. So they're still there. So they're right here. And that's going
to give that oxygen a plus one, a formal charge. And so this is the
hydronium ion, H3O plus. Our other product,
we would also make-- we would have our
chlorine, which had three lone pairs of
electrons around it already. And then it picked up
both of those electrons. Let me go ahead and mark them. The one in green that
it had originally brought to the dot structure. And also, the one
in blue, the one it took from hydrogen like that. So chlorine now has
a negative charge. So it's really the
chloride anion. So this would be Cl
minus, like that. So let's identify our
Bronsted-Lowry Acid and our Bronsted-Lowry
Base for this reaction. So let's go back over here
and see what happened. So the H20, the water,
acted as a proton acceptor. It accepted a proton from HCl. So water would be our
Bronsted-Lowry Base. And HCl donated a
proton to water. So HCl would therefore be
our Bronsted-Lowry Acid. So let's go ahead and identify
conjugate acid-base pairs here. So if HCl is our
Bronsted-Lowry Acid, I could think about its
conjugate base over here would be the chloride anions. So this would be the
conjugate base over here. So H2O was our
Bronsted-Lowry Base, and then over here, we can
find its conjugate acid, that's H3O plus. So this would be the
conjugate acid, over here. So when you're looking for
conjugate acid-base pairs, you're looking for
one proton difference. So H2O and H3O plus are a
conjugate acid-base pair. And HCl and Cl minus are a
conjugate acid-base pair. And if we look at what we
have in the right here, we are now saying H3O plus is
an acid, and Cl minus is a base. And so, one thing
you'd think about is H3O plus donating
a proton to Cl minus. And so, we'll draw a little,
tiny arrow going back to the left. Because the equilibrium for this
reaction lies far to the right. So we're going to get a lot more
of your products on the right here. But just thinking about
these definitions, right, H3O plus would
be donating a proton, and Cl minus would be
accepting a proton. The chloride anion would
be accepting a proton. But again, we know
HCl is a strong acid, so we know the equilibrium
lies far to the right. So that's the idea
about Bronsted-Lowry. Let's look at
another definition, which is actually a
little bit more broad. So this is a Lewis
Acid and Lewis Base. So a Lewis Acid is an
electron pair acceptor. And so, an easy way to remember
this is, acid acceptor. And a Lewis Base is an
electron pair donor. And so, one way to remember
that this Lewis Base is an electron pair donor is
to, if you think about this b being lowercase. And then just flipping it
around, you would get a d here. So you get d. So a base is a donor. So let's look at
this reaction here. And we have this cyclic
ether, over here on the left. And then we have borine
over here on the right. Now, notice there's no octet of
electrons around boron, right? Boron is only surrounded
by six electrons here. And that makes it very reactive. Boron is SP2
hybridized, which means it has an empty p orbital. And so, let me go ahead and
represent the empty p orbital like this. It's able to accept
a pair of electrons. And the ether over here is going
to donate a pair of electrons. And so, let's go ahead
and show what happens. The oxygen here is going to
donate a pair of electrons into the empty orbital. And there's going
to be a bond that forms between the
oxygen and the boron. So the ether over here is
donating a pair of electrons. So that must be our Lewis Base. And borine, over here, is
accepting a pair of electrons. So that's our Lewis Acid. Let's go ahead and
draw the product for our Lewis acid-base
reaction here. So we have our oxygen is
now bonded to the boron. The boron is still bonded
to three hydrogens, so we draw those
in there like that. And let's follow
some of our electrons here before we finish
drawing everything in. So these electrons in
magenta formed this bond between the oxygen
and the boron. And then we also had some
other electrons on that oxygen. Let me identify those. So these electrons right here
in red are still on that oxygen. So they are right
here on that oxygen. That oxygen therefore, has
a plus one, a formal charge. So plus one formal
charge on oxygen. And boron gets a negative one
formal charge now like that. And so, that's one Lewis
acid-base reaction here. Now the Lewis
acid-base definition is, once again, more
inclusive than Bronsted-Lowry. If we actually go up here
to the previous reaction, we can actually classify
these using the definition for Lewis Acid and Lewis Base. So let's look again at
what's happening here. So water is donating
a pair of electrons. Well, according to Lewis
Base, electron pair donor. So we could say that water, we
could say this is a Lewis Base. And HCl is accepting
a pair of electrons. So electron pair
acceptor is Lewis Acid. So we could call
this a Lewis Acid. So notice, it doesn't matter
what definition you use. If you use Bronsted-Lowry,
this is your acid. If you use Lewis,
this is your acid. Or if you use,
over here for base, this is your base,
according to Bronsted-Lowry. This is also a base
according to Lewis. And Lewis Acid and Base also
have particular importance in organic chemistry because
you can talk about the term Lewis Acid as being
synonymous with electrophiles. So you could say this
is an electrophile. And then, you could say a Lewis
Base is an electron pair donor. That's a nucleophile. And nucleophile,
electrophile are extremely important
concepts to understand when you're talking
about organic chemistry.