Main content
Physics library
Course: Physics library > Unit 16
Lesson 1: Michelson and Morley's luminiferous ether experimentPotential ways to detect an ether wind
Thinking about how Earth's relative velocity to hypothetical luminiferous ether can be used to detect ether.
Want to join the conversation?
- What exactly is an "ether"?(17 votes)
- The ether is a hypothetical medium filling all space for transferring both electromagnetic and gravitational waves. It comes from the Greek word αἰθήρ, meaning upper air. The luminiferous ether, the one Sal was referencing, is the hypothetical medium for light.(41 votes)
- Is medium always has a direction? Particles in solid material is not moving, so it means it's not having a direction, but it can be a medium for sound. Why can't we think ether wind like that?(5 votes)
- But the point Sal was making was that we are moving relative to the sun and to the center of Milky way. So if it's fixed in some way, then we are moving relative to it, and so it is moving relative to us. If the medium wasn't moving relative to us, then that would be a massive coincidence. And even then, it would have to be moving relative to the sun, in which case we would still see some effect as light passed through it.(10 votes)
- Did we know that light has a constant velocity in the nineteenth century? If we did shouldn't we be focusing on wavelength of light? Because speed of light in space is around 3*10^8 m/s and it will remain constant by adjusting its wavelength. Shouldn't we search for possible redshift or blueshift rather than speed ? Just saying but if we did not know the speed remained constant its a whole different story.(2 votes)
- Obviously that was not known, which is why there were efforts to find the effect of the ether. Maxwell determined his equations around 1870, and that was the first indication that the speed of light was constant in some way, but most people still understood it to mean that the speed was constant relative to some medium - the ether. That's how other waves work, so it would be reasonable to guess that light would work that way as well. But it doesn't.(7 votes)
- Could we plot our (the earth's) velocity/ position with respect to space graphically, if we find an origin point of the universe in space? (In this case an origin point means the "place" where the Big Bang occurred.)(5 votes)
- Of course we can't detect the exactly point where the big bang had occurred because velocity can work at any direction even with respect to space graphically but by observing our path around the sun we can use the probability to find the probable points where the big bang had occurred!
But I am to greet you for asking this interesting question!(1 vote)
- this may seem weird, but how can scientist compare ether to the mediums present on earth??..,. ether might be having different properties from that to the mediums present on earth.(2 votes)
- It definitely would have to have different properties, if it existed. THat's the point.(2 votes)
- Would it not be possible that ether wind was affecting the frequency of light / photons instead of its speed?(2 votes)
- can the luminiferous ether be similar to the fabric of space and time?(2 votes)
- No, the luminiferous ether was a way to have an absolute rest frame against which you could measure velocity against. Space-time doesn't give you that.(1 vote)
- How is it possible to know the speed of ether wind in order to compare with the speed of light ?(2 votes)
- what if the ether itself is stationary....and there is no ether wind?(1 vote)
- The earth is moving through space. If the ether is all around in space, the earth must be moving through it. That's where the wind comes from.(2 votes)
- Before the big bang, was the entirety of the universe condensed in a small ball of infinite density? If it was, then it should have been a black hole, shouldn't it?(2 votes)
- yes except it was equal all the way throughout theoretically or it may have been a singularity(0 votes)
Video transcript
- [Voiceover] We've already
talked about light having wave-like properties, and the
waves that we're familiar with in our everyday life we consider to be disturbances traveling through a medium. We talked about dropping
a pebble in water, and the water's a medium, and we see the wave travel outwards. We think about sound waves,
which is disturbance in the air. We think about a wave
traveling through this rope, the medium there is the rope. So, in the mid-19th century it
was completely reasonable for folks to say, "Well look,
light has wave-like properties; it must be a disturbance
traveling through a medium." And they said, "Well what
do we call that medium, even though we don't observe it directly? Well, let's call it the
luminiferous Ether." So an obvious question
that was facing folks who had this reasonable
assumption, they said "Well, can we somehow detect
the luminiferous Ether? Can we validate the
luminiferous Ether existing?" And a key realization is,
is "Well, we must be moving quite rapidly relative to
the luminiferous Ether." How do we know that? Well, we just have to remind
ourselves that, obviously the Earth is rotating, but
not only is it rotating on its own axis, but it's
rotating around the sun. So if this is the sun right
over here, this is the Earth. The Earth is rotating, and
these are all rough figures, the Earth is moving around
the Sun at approximately 30 kilometers per second.
30 kilometers per second! By our everyday standards,
that's quite fast, but we're not done yet. 'Cuz the Sun is also moving
around the center of the galaxy. And this isn't an actual
picture of the Milky Way; obviously we haven't gotten
this far from our own galaxy to actually get this
type of a vantage point, but if the Sun were right
over there, the Sun, estimates are, are moving with
a speed of 200, roughly, 200, let me write that in a better color so you can actually see it,
200 kilometers per second. 200 kilometers per second around the center of the Milky Way, and then the Milky Way
itself could be moving. So we don't know our actual,
kind of, our orientation relative to the Ether, but we are, we're constantly changing our orientation, we're moving in these orbital patterns. If there is some type
of luminiferous Ether, if there is some type
of luminiferous Ether, and I'm just gonna draw
these lines over here to kind of show our luminiferous Ether, we must be moving relative to it if we orient ourselves just the right way. In fact, the odds of us
being stationary relative to the Ether are pretty close to zero, especially if we wait a little. If we're stationary relative
to the Ether right now, let's say at this point, since
we're changing our direction, we're not going to be
stationary relative to the Ether at that point. And that's just when you consider the Earth's orbit around the Sun. It's even more true
when you think about the solar system's orbit around
the center of the galaxy, or even the movement of the galaxy. So, we should be moving
relative to the Ether, or the Ether should be
moving relative to us. So we should be able
to detect some type of, some type of what's
called an "Ether wind". 'Cuz it should be moving relative... Ether wind. Now how would you detect an Ether wind? Well, let's think about
some other type of medium moving relative to us. Let's say that we are
sitting on an island, let me do this in a better
color for an island. So let's say that we're
on an island that's in the middle of a stream. So these are the shores of the stream. These are the shores of the stream. And there is some type of a current. So the water is moving in that direction. So that's the medium. And now let's start a wave
propagating through this. So if I were to just
take a pebble and drop it right over here, what would happen? Well the wave is going to
propagate faster to the left than it is to the right. This is from our everyday experience, and that's because to
the left it's moving, the medium is also moving to the left. So as the medium moves, and then you propagate
through that medium, you're going to move faster
to the left than to the right. So the wave is going to
propagate, is going to propagate, something is going to propagate, so after a small period of time, the crest on the right might be there, but the crest on the left might be there. So it might look something like this. And then after another period of time, it might look something, it'll
look something like this. So the general point is, for
this little stream example, you're going to see your
wave propagate faster in the direction of which
the medium is moving. So similarly, if you have an Ether wind, if you have Ether wind and
this luminiferous Ether is the medium by which
the light propagates, the light is a disturbance in this medium, then if this Ether wind has some, let's say it has some speed, let's just call it "S". If you were try to propagate
light in that direction versus in this direction,
versus in that direction, it should go faster, we
should notice it going faster if it's going along the
same direction as the Ether. 'Cuz it's propagating through something that's also moving relative to us. And likewise, if it's going
in the opposite direction of the Ether, even though
it's propagating through the actual Ether at that same speed, the Ether is moving in the
other direction, so the light, based on our 19th century
understanding of the universe, the light should seem slower. So you can imagine, people
started to theorize, "Well, maybe we can measure
light in different directions and see if, relative to
us, if relative to us, we see a different velocity for light." Now the problem was, is that
in the mid-19th century, light is incredibly fast. We now know that the speed
of light is approximately 300 thousand kilometers per second. And in the mid-19th century,
we didn't have good tools to measure this with a lot of accuracy. Especially because the Ether wind itself, even if you say "This is
30 kilometers per second, maybe we're moving around
the galaxy at, you know, 200 kilometers per second, maybe
300 kilometers per second", that's still a small fraction
of the actual speed of light. So if you don't have a lot of
accuracy when you're measuring the speed of light in these
different directions, and the Ether wind is so slow
relative to the speed of light, well, with just traditional
tools in the 19th century, you're not going to be able to detect this actual Ether wind, if it existed. And that's what gets us to the famous Michelson-Morley Experiment, because there they didn't
just directly try to measure the speed of light in
one direction or another, instead they thought about,
"Let's split some light into two different directions,
and then recombine them and see the interference patterns. And if the different directions
traveled at different speeds then we'll have different
interference patterns." And we're going to see
that in the next video.