Main content
MCAT
Course: MCAT > Unit 9
Lesson 13: Aldehydes and ketones- Aldehydes and ketones questions
- Nomenclature of aldehydes and ketones
- Physical properties of aldehydes and ketones
- Reactivity of aldehydes and ketones
- Formation of hydrates
- Formation of hemiacetals and hemiketals
- Acid and base catalyzed formation of hydrates and hemiacetals
- Formation of acetals
- Acetals as protecting groups and thioacetals
- Formation of imines and enamines
- Formation of oximes and hydrazones
- Addition of carbon nucleophiles to aldehydes and ketones
- Formation of alcohols using hydride reducing agents
- Oxidation of aldehydes using Tollens' reagent
- Cyclic hemiacetals and hemiketals
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Reactivity of aldehydes and ketones
Electron distribution in aldehydes and ketones and how it influences reactivity. Created by Jay.
Want to join the conversation?
- In this video you talked about how the R groups are electron donating (at). However, in the last video (Physical Properties of Aldehydes and Ketones) you also said that the aldehyde had a lower boiling point than the ketone. Wouldn't the dipole moment in the ketone be smaller because there are two electron-donating groups attached to the partially positive carbon as opposed to only one electron-donating group attached to the partially positive carbon in the aldehyde? Wouldn't the dipole moment in the aldehyde be larger then? And wouldn't that also cause a stronger dipole-dipole interaction between more partially positively and partially negatively charged atoms? Overall, wouldn't this cause the aldehyde to have stronger intermolecular interactions and thus a higher boiling point? Please explain if not. 4:30(11 votes)
- Alkyl groups donate electron density to the carbonyl carbon, but the electronegative O atom grabs most of this density.
The O atom in a ketone therefore has a greater negative charge, so the C=O bond is more polar than in an aldehyde.
The dipole moments of aldehydes are about 2.5 D, but the dipole moments of ketones are about 2.9 D.
Ketones have higher intermolecular forces and therefore higher boiling points than aldehydes of similar molecular mass.
For example, acetaldehyde boils at 49 °C, while acetone boils at 56 °C.(8 votes)
- why formaldehyde is a sp2 hybridisation ?the picture shows that oxygen has 2 lone pair btw the video shows that 3 sigma bond +0 lone pair in the 0.46 second pls ans me?is it right or no(2 votes)
- The video shows that the O has two lone pairs and a double bond to the C.
A double bond counts as a one electron domain.
∴ The steric number is 3 and the hybridization is sp².(4 votes)
- In one video " Comparing pKa values of aldehydes and ketones", KA explained that aldehyde is more acidic than ketone because it has one less alkyl donating group. In ketone, having more donating electron groups destabilizes the negative charge and thus ketone is not as acidic as aldehyde, which is a stable CB due to no donating electron group.
Now in this video, Jay explained the opposite in which more R electron donating groups stabilizes the carbocation because oxygen can withdraw more electrons from the R groups. Thus they are more stable and less polarized than aldehydes
My questions are:
1) I'm confused as to why one video says ketone is stable and the other says it's not because of the electron donating groups? One thing I'm certain is that to have a strong acid, its CB gotta be stable.
2) Reactivity is pretty much the same as acidity in which the more polarized you are, the more likely you will donate electrons, thus making you more acidic? in this case, ketone is less polarized and less acidic than aldehyde.(3 votes) - How to differentiate between an aldehyde and a ketone(2 votes)
- aldehydes have an oxygen and hydrogen atom attached to the main chain. its formula is : R-CHO
ketones have the hydrogen substituted with another alkyl group . its formula is : R-CO-R(3 votes)
- what is hydrogen bonding?(1 vote)
- this is a sort of attraction between a partially negative and partially positive atoms in different molecules .. for example in water the oxygen atom is more electronegative than hydrogen so they withdraw the electrons of the bond towards it and gain a partially negative charge for each bond while the hydrogen gains a partially positive charge so due to the different charges the hydrogen bond occur between hydrogen in a water molecule and oxygen in another water molecule(3 votes)
- i would greatly appreciate if someone could please tell me how the rxn proceeds when an NH3 attacks a ketone please. Thank you.(2 votes)
- At7:44
jay said about steric number what is a steric no(1 vote)- Steric number = number of sigma bonds (or number of bonded atoms) + number of lone pairs
From the steric number you can determine hybridisation:
Steric number 4 = sp3
Steric number 3 = sp2
Steric number 2 = sp(2 votes)
- Is sp2 always 120 degrees and sp3 always 109 degrees?(1 vote)
- No for H20 and NH3 sp3 becomes 104.5 degrees and 107 degrees for more details watch https://www.khanacademy.org/video/sp2-hybridization-jay-final?qa_expand_key=kaencrypted_b16ccc99b085d63b9018e0d0e4cc2138_b88dd26be61c90adeb76ef0a5972f102a8ccc3cc2f48b15d7d4f130e853e7e441364d17e7d933302cda15ada143dcf3a4b3382af08803b8c6187bad96f0abf53e2712e3675a73a61f12048ef1e45fad90f38832be13f8b2ffaac3445f624e09eb08e947a252259bf6029183d2e5b247760af2eb44457b80bcec21d51e7f94a8e874d5caec5bfc6669cff178425be990a819993457998021fd590368839f42695642bc7d3a5ac20d74847f88aeba5697e65ae10b2bb9daf731e288a927797bfa2 video(2 votes)
- Atshouldn't the stereo-chemistry for the R and R' group be inverted because it is an SN2 type reaction? 7:30(1 vote)
- This would be SN1 not SN2, also the ketone being attacked is sp2, so there's no stereochemistry to invert. The product would be racemic because the nucleophile can attack from the top or the bottom face.(1 vote)
- if they ask a question about why ketones are more stable than aldehydes, how can we answer that? im talking about edexcel a2 chemistry unit 4 syllabus(1 vote)
- ketones are more stable because alkyl groups are weak electron donor groups so they can compensate partially positive charge on the carbonyl carbon donating some of the negative charge. aldehydes have only one alkyl group so the compensating is much lower.(1 vote)
Video transcript
Voiceover: Before we
get into the reactivity of aldehydes and ketones, lets first review the
bonding in a carbonyl. A carbonyl is the carbon
double bonded to the oxygen, so lets focus then on
this carbon right here on the formaldehyde molecule. Lets find the hybridization
stage of this carbon. So I'm going to draw an arrow to this. And to find the hybridization state, one way to do it is to think
about the steric number. Where the steric number is the number of sigma bonds plus the number
of lone pairs of electrons. So to that carbon, let's count
up some sigma bonds here. So we have a sigma bond to this hydrogen, a sigma bond to this hydrogen, and in our double bond here, one of those is a sigma bond and one of those is a pi bond. So we have a total of three sigma bonds. So three sigma bonds and zero lone pairs of electrons gives us a
steric number of three, which we know means it must
have three hybrid orbitals. And so this carbon is sp-two hybridized. So if I'm going to go ahead
and draw that carbon over here. So that carbon is sp-two hybridized, which means it has three
sp-two hybrid orbitals. And we go ahead and put those
three sp-two hybrid orbitals in here like that, alright. And we know that carbon has
un-hybridized p orbitals. And we go ahead and draw in that un-hybridized p orbital right here. Next lets think about those hydrogens. So these hydrogens ... Let me go ahead and put them in red here. So these hydrogens right here are bonded to that carbonyl carbon. Those have an electron in s orbital, which we know is spherically shaped, so I can put a s orbital in here. And the overlap of course
would be sigma bond. And so I have those
sigma bonds right there. Next lets look at the hybridization
of the carbonyl oxygen. So same idea. Number of sigma bonds plus number of lone pairs of electrons. So there is one sigma bond between the oxygen and the carbon, and then we have two
lone pairs of electrons. So one sigma bond and two
lone pairs of electrons gives us a steric number of three, which means that oxygen must
be sp-two hybridized as well. So the oxygen has three
sp-two hybrid orbitals. So let me go ahead and draw those. So put in the oxygen right here. Oxygen has three sp-two hybrid orbitals. Let me go ahead and draw in those sp-two hybrid orbitals. So there is one, and I
have these two over here. And so the lone pairs of
electrons on the oxygen ... One lone pair is going into
this sp-two hybrid orbital. The other is going to go into
this sp-two hybrid orbital. And then we have an overlap
right here for this carbon, so that is of course the sigma bond between the carbon and the oxygen. If the oxygen is sp-two hybridized, it must also have an
un-hybridized p orbital. So I'm going to draw in
the un-hybridized p orbital on the oxygen here like that. And then we can see that the pi bond comes from the side by side
overlap of our p orbitals. And so let me go ahead and
highlight the pi bond over here. So and that double bond again on the dot structure for formaldehyde. One of those is a sigma bond
and one of those is a pi bond. And over here we can
see that on the right. So this represents the
bonding of the carbonyl. And that is going to be
important when we think about things like molecular geometry. So if the carbon is sp-two hybridized, then we know that these atoms
lie on the same plane here, and we have bond angles
close to 120 degrees. We will talk more about
that in a few minutes. Next lets think about the
polarization of that carbonyl. So once again we look at the ... Lets go down to this
generic aldehyde here, and then we have this carbonyl carbon attached to this oxygen. Oxygen is more
electronegative than carbon, so it's going to withdraw
some electron density. We show the polarization
with this arrow here. The arrow points in the
direction of the electrons, so the electrons are going to be pulled closer to the oxygen, and so the oxygen is going to get a little
bit partially negative. So we draw a partial negative sign here. The oxygen is withdrawing
some electron density from my carbonyl carbon right here, so my carbonyl carbon is going to be partially positive like that. And for an aldehyde ... We know that alkyl groups
are electron donating. So our group right here on the left, you can think about that as being a little bit electron donating. Which means our group is going to donate some electron density. So I will draw an arrow showing
that some electron density is being donated by the R group. So remember when we did [carbo-cat-ines], and we put alkyl groups
on our [carbo-cat-ines]. The more alkyl groups we had, the more the [carbo-cat-ine]
was stabilized. So here we have one R
group donating a little bit of electron density
attempting to stabilize that partially positive
charge on the carbonyl carbon. Lets go over here to the ketone, and we have a similar situation. We have once again the oxygen withdrawing some electron density
from our carbonyl carbon. So we have a partial
negative on our oxygen, and our carbonyl carbon
gets a partial positive. But this time we have two R groups. So this R group on the left can donate some electron density. This R group on the right can donate some electron density. And once again, think
about the [carbo-cat-ines]. The more alkyl groups we had the more our full positive charge on our [carbo-cat-ine] was stabilized. Similar idea here. The more R groups you have, the more you stabilize the partial positive charge on your carbonyl. And so because of that, ketones are a little bit
more stable than aldehydes just thinking about the polarization. So there is more to polarization in an aldehyde carbonyl than in a ketone. Alright, so now lets put
these ideas together. Let's think about a
nucleophilic addition reaction to a carbonyl, and so
I'm going to go ahead and draw a ketone down here. And I know that the geometry around the carbon ketone is trigonal planar. Because we talked about
the bonding already. So let me go ahead and draw this in. So we are going to have ... Lets make a R prime group
coming out add some space and make a R group going
away from this space. And we know that these all are
on the same plane like that. So I'm drawing in my plane here. We also know that there is a
polarization of the carbonyl. So the oxygen is more negative and the carbon is a little
bit positive like that. So the carbon is partially positive. That means that ones electrons, it's electrophilic, and
that is extremely important when you are talking about reactions. Nucleophilic additions to carbonyls. So a nucleophile is going to come along. So lets go ahead a draw
in a nucleophile here. So lets go ahead and make it a negatively charged
nucleophile like that. So the nucleophile is
going to be attracted to positive things, right? Opposite charges attract. And so the nucleophile is going to attack the partially positive
carbonyl carbon like that. And when it does so, it
is going to perform a bond and therefore kick off these pi electrons here off onto this oxygen. So lets go ahead and draw the results of our nucleophilic attack here. So we are going to show a bond form between the carbon an the nucleophile. So let me go ahead and
highlight those electrons here. So these electrons right
here on the nucleophile have now formed a bond between the nucleophile and the carbon. And, lets see. We still have our oxygen. Our oxygen used to have two
lone pairs of electrons, but it picked up another
lone pair of electrons, so negative one a formal charge now, and then we have our R groups. So lets go ahead and draw
our R groups over here. So we have R prime and then
we have R over here like that. and so this will be an intermediate. And if we think about the
geometry of this carbon. Let me go ahead a label it here. So the geometry of this carbon now, if I calculate the steric
number I have four sigma bonds. And so four sigma bonds
means a steric number for four hybrid orbitals, so this carbon must be
sp-3 hybridized now. So a sp-3 hybridized carbon. And so therefore your bond angle is closer to 109 degrees. So in particular we are going to think about these R groups here. and so this angle right in here is somewhere around 109 degrees. So I'm going to go ahead and write that approximately 109 degrees. And so the bond angle has changed. So go back over here to
this situation on the left. This carbon right here
was sp-two hybridized, and therefore everything was planar, and so these bond angles
were approximately equal at approximately 120 degrees. And so we've gone from
approximately 120 degrees to 109 degrees for our intermediate here. So over here on the right
our sp-3 hybridized carbon has tetrahedral geometry so we call this our tetrahedral intermediate. So let me go ahead and write that. This is our tetrahedral intermediate, and it is an alk oxide and ion. And so now we can compare aldehydes and ketones
in terms of reactivity. And so the first factor is the
polarization of the carbonyl. So we've already seen that aldehydes are more polarized than ketones, and so therefore the carbonyl carbon is a little more positive. And that means the nucleophile can attack that positive charge a little bit more, and so that's one reason why aldehydes are more reactive than ketones. The polarization of the carbonyl. Another reason has to do
with steric hindrance. So when you think about a ketone, and lets say that we have some big bulky R groups here on this ketone, so these bulky R groups might prevent the nucleophile from attacking. So it turns out there is an optimum angle for the nucleophile to
attack the carbonyl carbon, and if you have bulky R groups
they might prevent that. They also would interfere
with the formation of the tetrahedral
intermediate because if I had big bulky R groups and I'm
changing the bond angle from 120 degrees,
approximately 120 degrees over here on the left to 109 degrees, those bulky R groups have to
be closer together in space and they would of course repel. And there is some steric
hindrance on formation of your tetrahedral intermediate as well. So for those two reasons we observe aldehydes to be more
reactive than ketones.