Main content
MCAT
Course: MCAT > Unit 9
Lesson 21: Thermodynamics- Thermodynamics questions
- Thermodynamics article
- Specific heat and latent heat of fusion and vaporization
- Zeroth law of thermodynamics
- First law of thermodynamics
- First law of thermodynamics problem solving
- PV diagrams - part 1: Work and isobaric processes
- PV diagrams - part 2: Isothermal, isometric, adiabatic processes
- Second law of thermodynamics
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Second law of thermodynamics
Visit us (http://www.khanacademy.org/science/healthcare-and-medicine) for health and medicine content or (http://www.khanacademy.org/test-prep/mcat) for MCAT related content.
These videos do not provide medical advice and are for informational purposes only. The videos are not intended to be a substitute for professional medical advice, diagnosis or treatment. Always seek the advice of a qualified health provider with any questions you may have regarding a medical condition. Never disregard professional medical advice or delay in seeking it because of something you have read or seen in any Khan Academy video. Created by David SantoPietro.
Want to join the conversation?
- These videos are awesome, I paid for a MCAT prep online and I use this more. Love this, thanks you're a great teacher!(58 votes)
- some flat earthers realy need to see this.(12 votes)
- How can you ever find W in the Boltzmann equation? Isn't the number of possible states always infinite because there is an infinite number of places each molecule could be in and an infinite number of possible velocities for each molecule?(2 votes)
- Infinite? the area is enclosed with a specific number of particles. In comparison to a larger area with more particles, which one would have more microstates? We say infinite number of possibilities but wouldn't there really be just a large number of possible states?(3 votes)
- Does this explain "warming up" in a cool swimming pool?(1 vote)
- No. "Warming up" in a cool swimming pool is a result of sensory adaptation. If your body freely exchanged heat with the much cooler, surrounding water, you would eventually experience hypothermia and likely die.(4 votes)
- Does "cold" and "hotter" stand for less and more energy? Or lower and higher temperature? Because if the "hotter" object has a lower specific heat capacity it can have the same temperature as the "colder" object. Even though the hotter contains less energy (J), as in the example.(1 vote)
- Interesting point, but I think theillustration of 6 blue and 6 red spheres infers identical atomic dynamics, albeit differing only by color. 2:00
Regardless, temp is one thing that will even out over time regardless of variance of heat capacity. Thus, hot tropical breezes will be cooled by cold ocean currents. (And vice versa).(2 votes)
- what is the statement of second law of thermodynamics ?(1 vote)
- I'm confused on the definition of "thermal energy" - it seems to be used synonymously with heat, however I thought that thermal energy was temperature (which is also related to work). How can you interpret when thermal energy is referring to temperature or just heat alone?(1 vote)
- aroundyou talk about what you would feel if you were standing on the cold side of the room, but if I started on the hot side I would feel the cold moving in to the right side of the room, so it would feel like the cold is going into the hot, can you help me understand? 9:42(1 vote)
- If you're standing on the hot side, the heat from your side would move over to cold side, making less heat for you, and therefore a cooler temperature. The result is the same, but the direction of heat flow is what's important.(1 vote)
- i still dont get how the entropy is related to how the heat moves.(1 vote)
- Entropy is a measure of disorder, and increasing temperature increases the energy of the system and thus its disorder. heat is a form of energy transfer , temperature of a system can be increased by heat transfer ,hence increasing it's entropy.(1 vote)
- Does entrophy mean degree of randomness or disorder ?(1 vote)
Video transcript
- Let's talk about the
Second Law of Thermodynamics. This law is weird. There's about 10 different
ways to state it, which is one reason why it's weird. Let's start with one of the
most common ways to state it, which is, if you've got a
cold object and a hot object, heat will never be seen
to flow spontaneously from a colder object to a hotter object. So if you have these two sitting together, maybe an ice cube and
a hot piece of metal, and you make them touch, heat's going to flow between them, but we know what's gonna happen. The heat's gonna flow from the hot object to the cold object, and never the other way. At least, not spontaneously. You can force heat from a cold object to a hot object, like we
do with a refrigerator or a freezer, but that's
using a heat pump. And those refrigerators
and freezers are doing work to force that heat from the
cold region into the hot region. It won't do it spontaneously by itself. You've got to force it to do it. So what the second law says,
or at least one version of it, is that that process will never be seen to happen in reverse. The heat will never be seen to flow from the cold object to the hot object. Now, you might be thinking, "Duh. "Do we really need a law to tell us that?" But it's not so obvious,
because you can still conserve energy and momentum and all the other rules of
physics and laws of physics by allowing heat to flow from the cold object to the hot object. In other words, let's say the cold object started with 10 Joules of thermal energy and the hot object started with ... It's hotter, so let's just say it has 30 Joules of thermal energy. You could imagine five Joules of energy going from the cold
object into the hot object which would leave you
with five Joules of energy for the cold object, 35
Joules of thermal energy for the hot object. You still have 40, just
like you did before. You didn't break the law
of conservation of energy. It's just, energy won't go that way. So why? Why is thermal energy never seen to flow from the cold
object to the hot object, even though it satisfies every
other known law of physics besides the second law? Well, before we answer that question, I think it'd be useful to talk about an alternate version of the second law, which looks something like this. The total disorder will
never be seen to decrease. What do I mean by "disorder"? Imagine you had a room and
there were blue spheres. And they're bouncing around wildly. So these all have some
velocity and random directions. And when they strike a wall or each other, they lose no energy. So they keep bouncing around like crazy. And then there's another
section of the room with red spheres, and these are also bouncing around randomly. They lose no energy. They
keep doing their thing. Except, there's a divider in this room that doesn't allow the red spheres to go onto the blue spheres'
side, and vice versa. These can't mix up. So right now, this is an ordered state because the reds are
separated from the blues. So we say that this state has a certain amount of order to it. But let's imagine we removed the divider. Now what's gonna happen? Well, you'll see these things mix up. This blue sphere will move over here, and it'll bounce onto this side. This red sphere will go over here. They'll just keep getting mixed up. And at some given moment,
you might find the spheres in some configuration like this. They're still bouncing around, but now they're all mixed up and we say that this state has a
higher amount of disorder. This is not ordered. We say that this is more disordered, which supports the second law. The second law says, if you let things do what they wanna do spontaneously, your system will go from
a more ordered state to a more disordered state. And you'll never see it go the other way. We can stand in this room and wait. But you're probably never gonna see the blue spheres line
up all on the left side and the right spheres
line up on the right side. With 12 total spheres, maybe
if you wait long enough, a really long time, you might catch it where all the red spheres are on one side and blues are on the other. But image this. Imagine
now, instead of six reds and six blues, there's
100 reds, 1,000 reds, maybe 10 to the 23d and
Avogadro's number of reds, and now they're all mixed up. The odds of ever seeing them
get back to this ordered state are basically zero. The probability isn't exactly zero, but the probability is very, very low that you would ever see a disordered state with that many number of particles reassemble themselves
into an ordered state. So we kind of just know
that from experience and what we've seen in
our day-to-day lives. But you still might be
wondering, "How come? "How come we never see a disordered state "go to an ordered state?" Well, it basically has
to do with counting. If you were to count all the possible ways of lining up the reds
over here on this side and the blues on the left-hand side, there'd be a lot of combinations that would satisfy that condition. I mean, you could swap
this red with that red, and this red with that red, all on the right-hand side. All these reds could get swapped around. And these blues, as well. They can get swapped around
on the left-hand side. You get a large number of variations that would satisfy the condition of blues on the left, reds on the right. But now I want you to ask yourself, how many possibilities
are there for having blues and reds spread out
through the whole room? Well, you could probably
convince yourself, there's more. And it turns out, there'll be a lot more. Now this red doesn't have to just maintain its position on the
right-hand side somewhere. This red can get swapped
out anywhere over here. I can swap a red with this blue, and this blue with this red, and this red with this red,
and this blue with this blue. I can move them all over. Now that these spheres have the whole room through which they can mix, the amount of states that
will have blues and reds mixed throughout the whole room will vastly outnumber the amount of states that have just reds on one side and just blues on the other side. And this simple idea is the basis for the Second Law of Thermodynamics. Roughly speaking, the
Second Law of Thermodynamics holds because there are so
many more disordered states than there are ordered states. Now, I'm gonna tell you something
that you might not like. This particular disordered
state that I have drawn, this exact one, is just as likely as this exact ordered state. In other words, if I get rid
of the barrier over here, if you came in, you'd be just as likely to find the room in
this exact configuration as you were to find it in
this exact configuration. These two exact states are equally likely, which sounds weird. It makes you think, "Well,
you're just as likely "to find an ordered state
than a disordered state." But no. This particular
state is just as likely as this other particular state. But there are so many more mixed-up states than there are separated states. Even though any particular
state is just as likely, since the mixed-up states vastly outnumber the separated states, if
you pick one at random, it's gonna be a mixed-up state because there are so many more of them. Imagine putting these all into a hat. Imagine writing down all the possible configurations of states,
ordered, disordered, in between. You put them all into a hat,
you pull one out randomly, any particular state is just as likely. But since there's so many
more disordered states, you pick one out randomly, it's probably gonna be mixed up. And if there's a large
number of particles, you're almost certain to find it mixed up. So to help us keep these ideas straight, we need some different terms. Physicists came up with a couple terms. One is a macrostate. And a macrostate is basically saying, okay, the particle are mixed up. That's one possible macrostate. And we could be more precise. We can say, the reds and the blues can be anywhere within the box. Another possible macrostate would be to say that the particles are separated, that is to say, reds are on this side, anywhere on that side,
but on the right side, and blues are on the left side,
anywhere on the left side. These terms are referring to a macrostate, an overall description
of what you would see. Now, there's another term, a microstate. And a microstate is a
precise, exact description of the nitty-gritty details of what every particle is doing within there. If I just tell you, "The
particles are mixed up," you're not gonna know
exactly where they are. Similarly, if I just tell
you, "They're separated," you're not gonna know
exactly where they are. You'll know they'll be
on the right-hand side, the red ones will, but you won't know. Maybe this red ones moves down here, maybe this red one moves up here. The microstate is an exact description. This red one's right here,
going a particular speed. This blue one's right here,
going a particular speed. If you specify the exact location, blue right here, blue right there, going that fast, red right here, what you're describing
to me is a microstate. And so the second law, another way of thinking about it, there are more microstates
for a disordered macrostate than there are micorstates
for an ordered macrostate. And that's why we see systems
go from order to disorder. It's really just a statistical result of counting up the
possible number of states. You might be wondering,
what does this have to do with heat going from hot to cold, all this talk about
microstates and macrostates? Well, it's not just position
that can get disordered. It's velocities that can get disordered, energy that can get disordered, and that's more of like
what's happening up here. The positions of the hot molecules aren't necessarily moving
over into the cold range. But the energy over here
is getting dissipated into the cold area. So image it this way. Let's get rid of all this. And imagine you had a
room with a gas in it, but this gas was kind of weird. At this particular moment,
all the gas molecules on the right-hand side
were moving really fast, and all the gas molecules
on the left-hand side were moving really slow. So the room was separated
into a cold region and a hot region, just
like this energy is. This is ordered, or at
least, somewhat ordered. It's more ordered than it's going to be. If you wait a while,
this is all gonna mix up. You're gonna have some
fast-moving particles over here, some slow ones over here. It's all gonna be blended together. And so, what would you say
if you were standing in here? At first, you'd feel cold because these particles
don't have a lot of energy. Then you start feeling warmer and warmer. You'd say heat is flowing over to the left because you feel faster-moving particles striking your body. And so you'd rightly
say that heat is moving from the right of this room
to the left of this room. It flows from the hot to the cold. And that's what's happening up here. Heat flows from the hot to the cold. You might object. These
are solids, I said, copper and an ice cube. A copper atom's not gonna make it over into the cold ice cube. But the energy is gonna move. So you can make the
same argument over here. Don't allow these, let's say
these are the copper atoms moving around fast, or at least
jiggling in place rapidly. When they bump into the
slower-moving water molecules in the ice cube, they're gonna
give those water molecules some of their energy. And this energy's gonna become mixed up. The energy will become disordered. It will go from this ordered state, where the high energy is over
here and low energy's here, to a disordered state where the energy's distributed somewhat evenly. So essentially what I'm saying is, if you consider the macrostate, where the hot molecules are separated from the cold molecules,
there will be less microstates that satisfy that condition than there will be microstates
that satisfy the condition for a macrostate where
the energy is mixed up and you're just as likely to
find a fast-moving particle on the left as you are on the right. This will have vastly more microstates, many more possible ways of
making up a mixed-up state than there are microstates
that create a separated state. I mean, there's gonna be a lot. I'm talking a lot of microstates that satisfy this condition
for this macrostate, separated. But there will be so many more microstates for the mixed-up
case, this dominates. That's why you always see heat flow from a hot object to a cold object, just because it's statistically inevitable with the large number of
particles that you have here. There are so many more
ways of heat flowing from hot to cold than
there are from cold to hot, statistically speaking, you just never see it go the other way. Energy will always, at
least spontaneously, if you let it do what it wants to, energy's always going to
dissipate and evenly distribute. That's why it goes from
the hot to the cold. This energy's trying to get mixed up, just because statistically, there are so many more ways for that to happen. Now, I need to tell you
that there's actually a scientific term for
the amount of disorder, and we call it the entropy. Physicists use the letter
S to denote the entropy. And if you wanna know the
formula for the entropy, you could look on Bolzmann's grave. This is Ludwig Bolzmann. He's got it on his gravestone.
How awesome is that? The entropy S is k, Bolzmann's
constant, times log. This is actually natural log of W. And W is the number of microstates for a particular macrostate. So you got some configuration,
you wanna know the entropy? Just look at what macrostate it's in, count up how many microstates are there for that macrostate, take log of it, multiply by Bolzmann's constant, that gives you the entropy. And there's a term for this W. It's called the Multiplicity, because it's determining the multitude of microstates that satisfy the conditions for a particular macrostate. Now, entropy is cool. Entropy is weird. Entropy is somewhat mysterious and still, probably, has secrets
for us to unlock here. I don't have time to go
into all of them here, but if you read up on it,
entropy has a role to play in the fate of the universe, the beginning of the
universe, the arrow of time, maybe our perception, all
kinds of facets of physics that are extremely interesting. And entropy, you always find
this guy lurking around. And one place you always find entropy is in the Second Law of Thermodynamics, because it allows us a third
way to state the second law, which is that the total
entropy of a closed system will always be seen to increase. Technically, if it's a reversible process, the entropy could stay the same. But honestly, for all
real-world processes, the entropy's gonna increase
for a closed system, which is to say that
the disorder increases.