Main content
MCAT
Magnetism - Part 1
Introduction to magnetism: lodestones; like poles repel, opposite poles attract; no magnetic monopoles; magnetic spin. Created by Sal Khan.
Want to join the conversation?
- It seems that the practice questions were much harder than what these videos went over. To be fair I have not taken the second course in Physics that covers this stuff, so this is essentially my first time learning all of this.(14 votes)
- if only magneto was greek. it would've made a lot more sense. ancestors? maybe?(11 votes)
- Some Spartan helmets kinda look like Magneto's mask. Search it on Google images if you want; it's pretty funny.(3 votes)
- To answer the most important question from this video, the name magnesium originates from the Greek word for a district in Thessaly called Magnesia.(8 votes)
- All your compass are belong to us - Canada(5 votes)
- how the different poles of different magnets attract each other, even magnetic forces do no work/?.what is the force over there?(4 votes)
- Isn't the magnetic north somewhere near the geographic south pole?(3 votes)
- what is the meaning of magnet?(2 votes)
- can we have electric dipoles(1 vote)
- yes that is created by a proton and electron being together, think of an molecule of H2O with the oxygen being slightly negative and the hydrogens being slightly positive due to the electron movement and charges of the ions.(1 vote)
- Dear sir madame, have you got any info on medical Biomagnetismo?? And how the processes of magnetism specially in how the electromagnetic charges equalize the number of ions in each cell as to restore homeostasis. I am interested in enrolling with you in ordee to explainatematically how we currently tumors thrfou medical biomagnetism and oxidize dirt, debris caused by pathogens in different physiological human cell human camps.(0 votes)
Video transcript
- [Voiceover] We've learned
a little bit about gravity. We've learned a little
bit about electrostatics. So, time to learn about a new fundamental force of the universe. This one is probably
second most familiar to us, next to gravity, and that's magnetism. Magnetism. Where does the word come from? Well, they actually ... I think several civilizations ... I'm no historian ... Found these lodestones, these objects ... Magnetism. Magnetism ... These objects that would
attract other objects, like in other magnets, or would even attract
metallic objects like iron, ferrous objects, and they're called lodestones. That's, I guess, the Western term for it. The reason why they're called magnets is because they're named after
lodestones that were found near the Greek province of Magnesia. Magnesia. I actually think the
people who lived there were called Magnetes. But anyway. You could Wikipedia that and learn more about it than I know. But anyway. Let's focus
on what magnetism is. I think most of us have at
least a working knowledge of what it is, it terms, you know, we've all played with magnets and we've dealt with compasses. I'll tell you this right now. What it really is, is pretty deep. I think it's fairly ... I don't think anyone has ... We can mathematically
understand it and manipulate it and see how it relates to electricity. We actually will show you
that the electrostatic force and the magnetic force are
actually the same thing, just viewed from different
frames of references. I know all of that sounds very complicated and all of that. But in our classical Newtonian world, we treat them as two different forces. But what I was saying is, although we're kinda used to a magnet, just like we're used to gravity, just like gravity is
also fairly mysterious when you really think about what it is, so is magnetism. With that said, let's at least try to get some working knowledge of how we can deal with magnetism. We're all familiar with a magnet. I didn't want it to be yellow. I can make the boundary yellow. No, I didn't want it to
be like that, either. If this is a magnet, we know that a magnet always has two poles. It has a north pole and a south pole. These were just labeled by convention, because when people first
discovered these lodestones, or they took a lodestone
and they magnetized a needle with that lodestone, and then that needle they put on a cork in a bucket of water and that needle would point to the Earth's North Pole, they said, "Oh, well, "the side of the needle that is pointing "to the Earth's north, let's
call that the north pole, "and the point of the needle "that's pointing to the South Pole" ... Sorry. "The point of the needle "that's pointing to the
Earth's geographic south, "we'll call that the south pole." Another way to put it,
if we have a magnet, the direction of the magnet, or the side of the magnet
that orients itself, if it's allowed to orient
freely, without friction, towards our geographic north, we call that the north pole, and the other side is the south pole. This is actually a little bit ... Obviously, we call the Earth, we call the top of the
Earth the North Pole. You know, this is the North Pole. North Pole. And we call this the South Pole. And there's another notion of magnetic north. That's where, I guess
you could kind of say, that is where a compass, the north point
of a compass, will point to. Actually, magnetic north, it moves around because we have all of this moving fluid inside of the Earth and a
bunch of other interactions. It's a very complex interaction. But magnetical north is actually roughly in Northern Canada. So magnetic north might be here. That might be magnetic north. And magnetic south, I don't
know exactly where that is, but it can kind of move
around a little bit. It's not in the same place. So it's a little bit off the axes of the geographic North
Pole and the South Pole. This is another kind of
slightly confusing thing. Magnetic north is kind of
the geographic location where the north pole of
a magnet will point to. But that would actually
be the south pole of, if you viewed the Earth as a magnet. If the Earth was a big magnet, you'd actually view that as the south pole of the magnet. And this, and the geographic south pole is the north pole of the magnet. You could read more
about that on Wikipedia. I know it's a little bit confusing. But in general, when most
people refer to magnetic north, or the North Pole, they're talking about the
geographic north area, and the South Pole is the
geographic south area. The reason why I make this distinction is because we know when we deal with magnets, just like electricity, or electrostatics, although we'll show a key difference very shortly, is that opposite poles attract. If this side of my magnet is attracted to Earth's North Pole, then Earth's North Pole, or Earth's magnetic north, actually must be the south
pole of that magnet, right? And vice versa. The south pole of my magnet here is going to be attracted to Earth's magnetic south, which is actually the north pole of the magnet we call Earth. Anyway. I'll take Earth
out of the equation because it gets a little bit confusing. We'll just stick to bars because that tends to be a
little bit more consistent. Let me erase this. Let me. There you go. I'll erase my Magnesia. I wonder if the element magnesium was first discovered in Magnesia, as well. Probably. I actually looked up Milk of Magnesia, which is a laxative, and it was not discovered in Magnesia, but it has magnesium in it. I guess its roots could be in Magnesia, if magnesium was discovered in Magnesia. Anyway. Enough about Magnesia. Back to the magnets. If this is a magnet ... And let me draw another magnet. Actually, let me erase all of this. When I go on the tangents, I just ... All right. Let me draw two more magnets. That's one magnet. That's another magnet. We know from experimentation when we were all kids ... This is the north pole, this is the south pole ... That the north pole is
going to be attracted to the south pole of another magnet. Then, if I were to flip
this magnet around, it would actually repel. Two north-facing magnets
would repel each other. So we have this notion, just
like we had in electrostatics, that a magnet generates a field. It generates these vectors around it that, if you put something in that field that can be affected by it, it'll be ... there'll be some net force acting on it. Actually, before I go into magnetic field, I actually wanna make one huge distinction between a magnet ... or between magnetism and electrostatics. Magnetism always comes in the form of a dipole. What does a dipole mean? It means that we have two poles, a north and a south. In electrostatics, you do have two charges. You have a positive charge and a negative charge, so
you do have two charges. But they could be by themselves. You could just have a proton. You don't have to have an electron there right next to it. You could just have a proton, and it would create a
positive electrostatic field. Right? In our field lines of what a positive charge would do, and it would be repelled. You don't always have to have a negative charge there. Similarly, you could
just have an electron, and you don't have to have a proton there. So you could have monopoles. These are called monopoles, where you just have one charge, when you're talking about electrostatics. But with magnetism, you
always have a dipole. if I were to take this magnet, this one right here, and if I were to cut it in half, if I were to cut it in half, somehow, miraculously, each of those halves of that magnet will turn into two more magnets, where this will be the south, this will be the north, this will be the south, and this will be the north. Actually, theoretically, I've read, my own abilities don't go this far ... There could be such a thing
as a magnetic monopole, although it has not been
observed yet in nature. But so everything we have seen in nature has been a dipole. You could just keep cutting this up, all the way down to, if it's just one electron left, and it actually turns out
that even one electron is still a magnetic dipole. It still is generating, it still has a north
pole and a south pole. It actually turns out all magnets, the magnetic field is actually generated by the electrons within it, by the spin of the electrons. And that, you know, when we
talk about electron spin, we imagine, you know, some little ball of
charge that's spinning. But electrons are ... They do have mass, but it starts to get fuzzy whether they're energy or mass, and then, how does a ball of energy spin, et cetera, et cetera? So it gets very, almost metaphysical. So I don't want to go too far into it, and I, frankly, I don't think you really can get an intuition. It is almost, you know ... It is a realm that we
don't normally operate in. But even these large
magnets you deal with, the magnetic field is generated by the electron spins inside of it, and by the actual magnetic fields generated
by the electron motion around the protons. Well, I hope I'm not, not overwhelming you. And you might say, "Well, how come "sometimes a metal bar can be magnetized "and sometimes it won't be?" Well, when all of the electrons are doing random different
things in a metal bar, then it's not magnetized, because the magnetic spins, or the magnetism created by electrons are
all canceling each other out because it's random. But if you align the
spins of the electrons, and if you align their rotations, then you will have a
magnetically-charged bar. Anyway. I'm past the 10-minute mark. But hopefully that gives you a little bit of a working knowledge of what a magnet is. In the next video, I will show what the effect is ... Well, one, I'll explain how we think about a magnetic field and then what the effect
of a magnetic field is on an electron, or, not even an electron, on a moving charge. See you in the next video.