Main content
NCLEX-RN
Course: NCLEX-RN > Unit 14
Lesson 1: Muscular system- Myosin and actin
- How tropomyosin and troponin regulate muscle contraction
- Role of the sarcoplasmic reticulum in muscle cells
- Anatomy of a skeletal muscle cell
- Three types of muscle
- Motor neurons
- Neuromuscular junction, motor end-plate
- Type 1 and type 2 muscle fibers
- Calcium puts myosin to work
- Muscle innervation
- Autonomic vs somatic nervous system
- Thermoregulation mechanisms
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Thermoregulation mechanisms
Why do we shiver when it's cold? How do our muscles make sure we don't freeze or have a heat stroke? Learn how the skin, brain, blood vessels, and muscles work together to maintain our core body temperature. By Raja Narayan. Created by Raja Narayan.
Want to join the conversation?
- 6-fingered hand...?? I'm confused. And what happens to the skeletal muscle when the external temperature is high? relax?(22 votes)
- There was probably no real significance to using a six fingered hand but the condition is called Polydactyly (http://en.wikipedia.org/wiki/Polydactyly).
It seems to be a go to example for autosomal dominant traits and penetrance in genetics, so for a biology video, it's not surprising to see someone draw or use it as an example for fun.
As for your other question, I'm not sure.(12 votes)
- How would temperature affect cardiac output as a result of vaso-constriction or vaso-dilation in an athlete such as an American Football player (i.e. wide receiver)? Most professional athletes have high stroke volume so even at a low heart rate a large amount of blood is sent to the body, but I'm wondering if temperature is significant or when does it become significant enough to see performance effects?(7 votes)
- Well, the first problem with getting cold is cramping and tightness of muscles where you risk pulling a hamstring or something. The second problem is losing circulation to extremities so you can't feel the ball (or bat, or whatever).
The best article I could find is this: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1318440/ showing that mild hypothermia can diminish athletic performance a bit. So, makes sense to wear one of those gigantic full-body coats when you're on the sidelines to try and stay warmed up, which they always do.(1 vote)
- Is radiation(heat loss) in hot environment is only due to energy produced from reactions taking(clashing of components) within blood ?(3 votes)
- Actually radiation has nothing to do with the clashing of components within blood. Radiation is the loss of energy due to eletromagnetic waves produced from all bodies in normal condition. In hot temperature radiation plays little role in the cooling process, as does convection(air gasped in and out) and conduction(due to thermal movement of particles). What plays the major role is sweat release. For evaporation of sweat it is required a giant amount of energy(water has high specific heat), energy that is taken from our body, thus leaving it cooler in the process.(6 votes)
- he didn't mention skeletal muscle when it's hot? Does it also vasodilate like smooth muscle?(3 votes)
- The only tissue that vasodialates is the circulatory tissue and more specifically only arteries. Since nearly everything in enervated by arteries, I can see how this could be confusing.(6 votes)
- Well, I understood very well about why we do shiver in cold environments. My question is, when we do physical exercises in cold environments, there is vasodilation, more of heat is produced, blood circulation increases and as a result we sweat. But when we have fever, our internal body temperature rises due to increased blood circulation(vaso-dilation) so as to kill the pathogens. But in this case we shiver and do not sweat! Why does this happen?(3 votes)
- I'm no doctor, so take my response with a grain of salt. This is how I interpret things:
If our body raises its internal temperature via vasodilation in order to attack a pathogen, then it follows that if it wants to keep raising that temperature it will shiver and prevent sweating because it wants to raise its internal temperature even more.(6 votes)
- wait why did the hand have six fingers?(3 votes)
- no relevance, there are ppl out there with 6 fingers(3 votes)
- Haha, it's funny that the hand accidentally got drawn with six fingers.(3 votes)
- Can the physiological impacts of vasodilation and vasoconstriction (thermoregulation and homeostatic correction in response to being hot or cold) be partially contributed to the volume of the new system?
Here are my assertions:
When vasodilation occurs, the volume within the blood vessel has increased and therefore less collisions occur at the cellular level and the heat of the system decreases in response to less energy generation. When vasoconstriction occurs, the RBCs, etc. are confined to a lower volume and will collide more frequently with both each other and the walls of their vessel. In this way, they are generating more energy and subsequently more heat.
Is this the right train of thought, or was the reasoning in the video - vasodilation results in heat leaving the system and vasoconstriction traps heat in the system - the primary cause of our thermoregulation?(2 votes)- Vasodilation occurs in the dermis when we are hot, so a Caucasian person's skin appears pink or red. The blood is closer to the external environment and heat radiates more quickly out of the body, cooling the body. When a person is cold, the vasoconstriction shunts the blood away from the surface of the skin to the center of the body, conserving the heat. The person appears pale as a result. The collision of blood cells is not a major contributor to heat generation, but I like the fact that you are trying out a new hypothesis.
Book on!(3 votes)
- What's the common name for vasodilation in response to heat?(2 votes)
- Well, I think in our day-to-day lives most of us do not think about the vasodilation that occurs when it is hot around us. Instead we pay attention to the sweating. Even if the purpose of sweating is the same, to get rid of excess body heat, it is a separate process from the vasodilation. Still I think we might commonly be talking about sweating at times where vasodilation is involved, because both the vasodialtion and the sweating is happening at the same time.
Just a thought on my part :)(2 votes)
- What accounts for the variance in how individuals respond to hot or cold temps? Why are our tolerance levels of either hot or cold in climate so variable?(3 votes)
- To answer to the second question, because we are easily adaptable to weather, which is a good thing.(1 vote)
Video transcript
Why do we shiver when it's cold? What do the five
fingers say to the face? In this video, we'll talk about
how our body uses our muscles to maintain a core
body temperature. That process is called
thermal regulation, the regulation of
body temperature. So in order to do that,
I'll first give you guys an overview of how
thermal regulation works. Next, we'll talk about
how our bodies respond to hot temperatures, before
finally talking about how our bodies respond
to cold temperatures. So first, if we have this
gentleman right here, who doesn't look very impressed. And he's holding
his hand up one day and notices it's
really hot outside. That looks really hot. So the skin on his hand and
his arm, the rest of his body, will perceive that
it's really warm. And in doing so, this will
create a neuronal signal, a signal that's sent across
neurons, up into the brain. And the part of the
brain that perceives that it's really warm
outside has a specific name. It's called the hypothalamus. And in fact, we split
up the hypothalamus into two different
parts to respond to two different
types of temperature. There's the anterior
hypothalamus, which just means the
front of the hypothalamus. And then there's also the
posterior hypothalamus. And that's just the back
of the hypothalamus. But which one responds to
what kind of temperature? Well, the way I remember it
is that if it's hot outside, we like to use the front
of our hypothalamus or the anterior part
of our hypothalamus to respond to
temperatures that make it feel like we're on fire. So if we're on fire,
we're going to use the front of our
hypothalamus to respond. Well, what if it's cold? In those situations, we'll use
the posterior part, or the back of our hypothalamus, to respond
to climates that make us say, brr. We say brr because it's
really cold outside. So we use the back
of our hypothalamus. OK. So that all sounds good. But what happens
after our brain knows that it's really hot outside? Well, then it sends back
a signal to our bodies telling it to respond,
to maintain our core body temperature. And of all things to take
point from here and act, it's going to be
muscles in our body that will do something to
make sure we can maintain our core body temperature. That'll involve smooth muscle. And when it's cold, we
also use skeletal muscle to respond to
changing temperature. So how does that work? Let's take a look. When we're in a hot
or a cold environment, how do muscle help
us respond here? Well, the way to
talk about this is to go through the two main types
of muscle that will act here. First, there's smooth muscle. Specifically, it's smooth muscle
that lines our arterioles. Now, arterioles are
just smaller versions of our arteries, arterioles. The other type of muscle
that functions here is called skeletal muscle. And that's the
type of muscle that works in your biceps,
your triceps, all right. Now, let's answer
this question here. Why do you think
arterioles have anything to do with temperature? I mean how does that
change whether we have a lot of heat
in our body or not? Well, the way that works is that
if you take a look at a blood vessel-- and I'll just draw
a small one right here-- it's got a bunch of red
blood cells, and white blood cells, and proteins,
and whatnot. All of this is just
kind of running around through the bloodstream. And the way it does
that is just kind of in a random sort
of motion or manner. It's never directly forward. But it's just kind
of bumps around like that and moves this way. So overall, you've
got a general movement in the forward direction. But you kind of are
bumping around to do this. And the interesting thing
is this movement here, this momentum that your red
blood cells, white blood cells, or whatever you have in
your bloodstream make, that's energy. So we have a ton of
energy in our bloodstream. And energy is just
another form of heat. So if we are in a
hot environment, we want to get rid of this heat. So we're going to put more
heat to our most superficial or the most external parts
of our body, our skin. So the more blood flow we get
to our skin, the more heat we can have leave our bodies. And that's how we get to
regulate our temperature. So let's talk about it here. When it's hot, our smooth
muscle then is going to relax. And in doing so,
the arterioles then are going to become
wider or larger. And this process is
called vasodilation. Your arterioles are dilating. They're becoming wider. And so the way you
could see that happen is that this blood vessel
that was about yay big, is now going to become
that big in the skin. And so that means that you're
going to have a lot more blood flow going in here to the skin. You're going to have tons
of red and white blood vessels and protein just kind
of merrily tumbling about, going like this. That means you're going to
have a ton more heat or energy that's present here, that
can then dissipate and leave. And so that helps you cool off. You're losing all of
this energy or this heat that you have by diverting
blood flow to your skin. Now, what does skeletal
muscle do here? They don't do anything
when it's hot. They'll respond in
a second-- and we'll talk about that--
when it gets cold. What do smooth muscle do
when we're in the cold? Well, you can imagine that if
we relaxed when it was hot, it's fair to think
that we're going to contract when it's cold. And so this process
then in the arterioles is going to be called
vasoconstriction, which just means the narrowing
of our arterioles. And so if I were to draw
that on a diagram right here, you would see that
this blood vessel, that looked like this in
our normal state, is now going to turn into
something more like that, kind of a pipsqueak,
really tiny. So you're going to have red
blood cells, white blood cells, and protein just
kind of shifting through here like this. But there's not a
lot of opportunity to kind of tumble
around and be naughty. They just got to go forward. They can only go
in one direction because there's not a lot of
space here for blood flow. And so in the skin, you're going
to have less energy or less heat that's present at this very
external or superficial part of your body. The more blood
that you have that gets away from the
skin, the more that's going to go towards your core. Your core will then have
more energy or more heat to help you stay warm
when it's cold outside. So that's what your
smooth muscle does. What do skeletal muscle do? Well, skeletal muscle will
also contract when it's cold. But there's a very different
purpose for why that happens. When skeletal muscle
contracts, it's going to take ATP, or adenosine
tri-- or three-- phosphate and break that to make
adenosine diphosphate, ADP. So that's two phosphates. And we just snapped off
a little phosphate group. I'll write an "I" here to
show that it just snapped off. But these aren't the only
two things that are made. You actually will
produce energy as well. And we call this reaction
an exothermic reaction, "exo" meaning exiting
or the leaving of. "Thermo" or "thermic"
meaning heat or energy. And so we're actually
producing energy here by contracting our
skeletal muscle. This happens in our core
muscle groups that cause more of the heat that's being
produced from this reaction to be stored there,
to help us respond to these cold environments. Now, this isn't such
an unusual process that's so foreign to us. The contraction of our
core skeletal muscle groups is actually just
called shivering. This is the whole reason why
we shiver when it's cold. Because we need to produce some
energy by breaking off some phosphate from this ATP. And that shivering
then will help us warm up when
we're in the cold. And that's how our
muscles help us respond to temperature change.