If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Interpreting linear functions — Basic example

Watch Sal work through a basic Interpreting linear functions problem.

Want to join the conversation?

• how are we supposed to know that t will increase each year?
• Because T=Year. And since years increase annually then T will increase since it represents the year. Hope this helped!
• What do you do with the 100? Why is it there in the equation?
• It is the y-intercept, it is the initial amount paid. You add this to each yearly increasing amount to get your final answer. It is the “b” in the “y=mx+b”
• i'm still a little confused.
• since, 3.53 is multiplied with 't' it means that amount paid by farmers will at least increased by 3.53 million dollars every year.
for example:- in 1991 p=3.53(0)+100 = 100
in 1992 p=3.53(1)+100 = 103.53
in 1993 p=3.53(2)+100 = 107.06
• Are there faster ways of solving this?
• Working in your head is usually quicker unless you think really slowly. It gets faster as you practice:)
• Hi im pooping right now
• why is the sat so hard
• are all scientific calculators allowed for the SAT or only some particular ones ?
• Yes, all scientific and 4 function calculators are allowed, but some graphing calculators with features such as wireless communication, printing, and keyboards are not acceptable.
• if t is increased by 2 what is the case then ? how do we know it is increasing by 1 each year
(1 vote)
• Since it's increasing 3.53 million every year, if t increased by 2 years it would be increasing by 7.06 million. As the question states, t is the current year. And every time we get to January 1st, the year increases by 1. Have you ever been in a time where a year increased by 2!? (So our next year's 2021, not 2020?)