If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Electric field

Definition of the electric field. Electric field near a point charge. Written by Willy McAllister.
Coulomb's Law describes forces acting at a distance between two charges. We can reformulate the problem by breaking it into two distinct steps, using the concept of an electric field.
  • Think of one charge as producing an electric field everywhere in space.
  • The force on another charge introduced into the electric field of the first, is caused by the electric field at the location of the introduced charge.
If all charges are static, you get exactly the same answers with electric field as you do using Coulomb's Law. So, is this going to be just an exercise in clever notation? No. The electric field concept comes into its own when charges are allowed to move relative to each other. Experiments show that only by considering the electric field as a property of space that propagates at a finite speed (the speed of light), can we account for the observed forces on charges in relative motion. The electric field concept is also essential for understanding a self-propagating electromagnetic wave such as light. The electric field concept gives us a way to describe how starlight travels through vast distances of empty space to reach our eyes.
If the idea of force "acting at a distance" in Coulomb's Law seems troublesome, perhaps the idea of force caused by an electric field eases your discomfort somewhat. On the other hand, you might also question if an electric field is any more "real". The reality of an electric field is a topic for philosophers. In any case, real or not, the notion of an electric field turns out to be useful for predicting what happens to charge.
We introduce electric field initially with static charges to ease into the concept and get practice with the method of analysis.

Definition of electric field

The electric field E, with, vector, on top is a vector quantity that exists at every point in space. The electric field at a location indicates the force that would act on a unit positive test charge if placed at that location.
The electric field is related to the electric force that acts on an arbitrary charge q by,
E, with, vector, on top, equals, start fraction, F, with, vector, on top, divided by, q, end fraction
The dimensions of electric field are newtons/coulomb, start text, N, slash, C, end text.
We can express the electric force in terms of electric field,
F, with, vector, on top, equals, q, E, with, vector, on top
For a positive q, the electric field vector points in the same direction as the force vector.
The equation for electric field is similar to Coulomb's Law. We assign one of the q's in the numerator of Coulomb's Law to play the role of test charge. The other charge(s) in the numerator, q, start subscript, i, end subscript, create the electric field we want to study.
start text, C, o, u, l, o, m, b, apostrophe, s, space, L, a, w, colon, space, end text, F, with, vector, on top, equals, start fraction, 1, divided by, 4, pi, \epsilon, start subscript, 0, end subscript, end fraction, start fraction, q, q, start subscript, i, end subscript, divided by, r, squared, end fraction, r, with, hat, on top, start subscript, i, end subscript, start text, n, e, w, t, o, n, s, end text
start text, E, l, e, c, t, r, i, c, space, f, i, e, l, d, colon, space, end text, E, with, vector, on top, equals, start fraction, F, with, vector, on top, divided by, q, end fraction, equals, start fraction, 1, divided by, 4, pi, \epsilon, start subscript, 0, end subscript, end fraction, start fraction, q, start subscript, i, end subscript, divided by, r, squared, end fraction, r, with, hat, on top, start subscript, i, end subscript, start text, n, e, w, t, o, n, s, slash, c, o, u, l, o, m, b, end text
Where r, start subscript, i, end subscript, with, hat, on top are unit vectors indicating the line between each q, start subscript, i, end subscript and q.

How to think about electric field

The electric field is normalized electric force. Electric field is the force experienced by a test charge that has a value of plus, 1.
One way to visualize the electric field (this is my mental model): imagined small positive test charge glued to the end of an imaginary stick. (Be sure your imaginary stick doesn't conduct, like wood or plastic). Explore the electric field by holding your test charge in various locations. The test charge will be pushed or pulled by the surrounding charge. The force the test charge experiences (both magnitude and direction), divided by the value of the small test charge, is the electric field vector at that location. Even if you take away the test charge, there is still an electric field at that location.

Electric field near an isolated point charge

The electric field around a single isolated point charge, q, start subscript, i, end subscript, is given by,
E, with, vector, on top, equals, start fraction, 1, divided by, 4, pi, \epsilon, start subscript, 0, end subscript, end fraction, start fraction, start text, q, end text, start subscript, i, end subscript, divided by, r, squared, end fraction, r, with, hat, on top, start subscript, i, end subscript
The electric field direction points straight away from a positive point charge, and straight at a negative point charge. The magnitude of the electric field falls off as 1, slash, r, squared going away from the point charge.

Electric field near multiple point charges

If we have multiple charges scattered about, we express the electric field by summing the fields from each individual q, start subscript, i, end subscript,
E, with, vector, on top, equals, start fraction, 1, divided by, 4, pi, \epsilon, start subscript, 0, end subscript, end fraction, sum, start subscript, i, end subscript, start fraction, start text, q, end text, start subscript, i, end subscript, divided by, r, squared, end fraction, r, start subscript, i, end subscript, with, hat, on top
The summation is performed as a vector sum.

Electric field near distributed charge

If charges are smeared out in a continuous distribution, the summation evolves into an integral.
E, with, vector, on top, equals, start fraction, 1, divided by, 4, pi, \epsilon, start subscript, 0, end subscript, end fraction, integral, start fraction, start text, d, end text, q, divided by, r, squared, end fraction, r, with, hat, on top
Where r is the distance between start text, d, end text, q and the location of interest, while r, with, hat, on top reminds us the direction of the force is in a direct line between start text, d, end text, q and the location of interest. We will see examples of this integral in two upcoming articles.
The discussion above defines the electric field. There isn't any new physics, we've just defined some new terms. Now we're ready to move on and use the electric field formulation to analyze two common real-world geometries: the line of charge, and the plane of charge.

Want to join the conversation?

  • blobby green style avatar for user rajeshk9925
    Why electric feild is more stronger then magnetic field and gravitational field ?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • aqualine seed style avatar for user Shivaprasaath
    What is an equatorial line?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Kirill Khazan
    In the denominator of the equation given in "Electric field near multiple point charges", what is r? Considering we sum over multiple point charges, and our point might not be equidistant from all of them, shouldn't it be r_i?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user fahim ab
    Sir i'm not saying about electric field strength or intensity.I am asking that can we measure how much area an electric field surrounds.?or it is spread to infinity?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user karl.birkir.f
      The strength of the electric field weakens with the square of the distance. So if you double the distance it's only 1/4th of the strength, if you increase the distance ten-fold the strength becomes 1/100th, and so on. Much the same as gravity. So, while it might not be "cut off" at a certain point it obviously diminishes quite fast into trivial strengths. Perhaps we could view it as being "cut-off" when the strength goes below Planck sizes.
      (4 votes)
  • blobby green style avatar for user jw002332
    1. What is 1/4πϵ0? Is it the same as k?
    2. Is Coulomb's Law the same as the electric force equation which is Fe=k(q1q2/r^2)?
    3. Could anyone explain where [ F = (1/4πϵ0)(Q times Qi/r^2)(ri) ]?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • spunky sam orange style avatar for user Willy McAllister
      1. Yes. 1/4pie_o = k. It is just two forms of an arbitrary constant. The 1/4pi comes from a theory you study later in electromagnetics, Gauss's Theory, which deals with the surface area of a sphere (that's where 1/4pi comes from). Since Gauss's Theory is so important and is naturally written with the 1/4pi notation, some teachers bring that form all the way back to Coulomb's Law.

      2. Yes. Coulomb's Law IS the electric force equation.

      3. Coulomb's Law arises from a real-world experiment. It is not something you can derive from first principles. Coulomb himself designed and performed the experiment to measure electric force, and used the data he recorded to create the Law named for him. The little ri at the end is a vector notation to indicate the force lies along the line between the two charges.
      (3 votes)
  • eggleston blue style avatar for user dena escot
    what is meant by "If charges are smeared out in a continuous distribution, the summation evolves into an integral."?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • old spice man green style avatar for user Willy McAllister
      There are two ways to think about charge. We know that charge is the property of two atomic particles, electrons and protons. This makes it convenient to think about charge as particles, or like a bunch of sand. You can count sand particles (if there are not too many). Coulomb's Law treats charge this way, there's a q1 and a q2.

      Another way is to think of charge as a continuous substance, like peanut butter. Peanut butter isn't a collection of particles, it's something different. You charge something by slathering it with peanut butter charge. The charge is uniformly distributed throughout the peanut butter.
      If you see a problem statement like "assume a uniformly charged rod," that's an example of the continuous peanut butter version of charge. Continuous charge will include a density specification like 2 coulombs per meter, or 3 coulombs per cubic inch.

      If you are presented with a problem based on peanut butter charge you have to figure how to apply particle-based Coulomb's Law. In this blob of charge we have to somehow identify a charge particle. The trick is to use calculus to focus down on a tiny tiny bit of the charged structure, a bit so small it can be considered a particle.

      So in the article you see the equation for the electric field from multiple charges

      F = 1/4pieo SUM (q_i/r^2)

      In peanut butter charge q_i becomes the differential charge dq, and the SUM turns into (evolves into) an INT (integral).

      F = 1/4pieo INT (dq/r^2)

      These two equations mean the same thing. In the second we rely on calculus notation to do the bookkeeping for adding up all those infinitesimal dq's.
      (2 votes)
  • blobby blue style avatar for user pickaboo👀
    does a force exists and shows its effect around an isolated charge present in free space
    (1 vote)
    Default Khan Academy avatar avatar for user
    • spunky sam orange style avatar for user Willy McAllister
      An isolated charge creates an electric field in the free space surrounding the charge. There isn't a force in free space because there is no other particle in the vicinity. Force only exists if there is a physical body present to experience it.

      When you introduce a small test charge to the neighborhood of the first charge, the test charge will experience a force.

      You can say the force comes from Coulomb's Law "acting at a distance", or you can say the force is caused by the electric field that exists in the space surround the first charge.
      (2 votes)
  • aqualine ultimate style avatar for user Kai Yuen Kwok
    Hi Willy,

    Can you elaborate on So, is this going to be just an exercise in clever notation? please?

    Also, what scale are we talking about here?
    when charges are allowed to move relative to each other
    (1 vote)
    Default Khan Academy avatar avatar for user
    • spunky sam orange style avatar for user Willy McAllister
      We define the electric field starting with a version of Coulomb's Law with one of the charges set to q = 1. Then this thing called "electric field" is said to exist out in space near the other charge. Then we come up with a tidy little equation that quantifies the "field". Something exists in thin air that you can't see? If you are a skeptic, this sounds like a fairy tale. And then I say you get the same answer if you just use the original Coulomb's Law. So what is the point of electric field? Is it just a bunch of pretend algebra?

      At this point in dealing with simple static e-fields you should be skeptical, and it should sound hokey. But, later on when Electricity and Magnetism gets more elaborate, you let charges move around relative to each other, and they start to generate magnetic fields. At that point the e-field definition becomes critical to understanding what nature is doing. The motions we deal with here in electro statics are "infinitesimally slow", meaning they are so slow the magnetic field is negligible and has no impact on the answer.
      (1 vote)
  • blobby green style avatar for user Sivayogamsenthil
    Electric field due to uniformly polarized sphere
    (1 vote)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user cassiecsy96
    how is electrostatics related to transformers?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • purple pi purple style avatar for user APDahlen
      Hello Cassiecsy,

      Nearly every electronics and physics textbook begins with a discussion of electrostatics. There is talk about charge, charge carriers, and the transfer of charge. These concepts lead an understanding of voltage and current.

      Electrostatics helps us understand how we move these charge carriers (electrons in a wire). How to describe the concepts and how to perform measurements.

      Since in all cases we are talking about the movement of charges electrostatics has everything to do with transformers.

      On the other hand, transformers are electromagnetic devices. Only the vocabulary of electrostatics is used. Unlike capacitors which store energy in electrostatic fields...

      Sorry, it's not a simple answer. Please leave a comment below if you would like to continue the conversation.

      Regards,

      APD
      (1 vote)